### UNCLASSIFIED

# AD NUMBER AD319669 CLASSIFICATION CHANGES TO: UNCLASSIFIED FROM: SECRET LIMITATION CHANGES

### TO:

Approved for public release; distribution is unlimited.

### FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; OCT 1960. Other requests shall be referred to Arnold

Engineering Development Center, Arnold AFB, TN.

### **AUTHORITY**

AEDC ltr 25 Aug 1970 ; AEDC ltr 25 Aug 1970



## AD 319 669

Reproduced by the

## ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA





NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to resufacture, use or sell any patented invention that may in any way be related thereto.

AEDC-TN-60-196



ARO, INC.
DOCUMENT CONTROL
NO IG-47-343
COPY 9 OF 34

SERIES A PAGES 13

0

0

(TITLE UNCLASSIFIED)

(o)

## DRAG FORCE TESTS ON A LENTICULAR SHAPE IN TUNNEL HOTSHOT 1

By William Wolny VKF, ARO, Inc.

October 1960

ര

XOZ

83100

## ARNOLD ENGINEERING DEVELOPMENT CENTER

AIR RESEARCH AND DEVELOPMENT COMMAND





(Title Unclassified)

### DRAG FORCE TESTS ON A LENTICULAR SHAPE IN TUNNEL HOTSHOT 1

Ву

William Wolny VKF, ARO, Inc.

### CLASSIFIED DOCUMENT

"This material contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794, the transmission or revelation of which in any manner to an unsuthorized person is prohibited by law."

October 1960

ARO Project No. 361112

Contract No. AF 40(600)-800 S/A 11(60-110)

SECRET

SECRET AEDC-TN-60-196

### ABSTRACT

Drag measurements were made on a lenticular shaped body at Mach numbers from 17 to 20 at zero angle of attack. A trend was established for the effect of viscous interaction on the measured drag.

SECRET 2

### CONTENTS

|        |                         |       |     |      |     |     |     |     |       |              |              |     |     |     |     |      |     |   |   |   |   | Page   |
|--------|-------------------------|-------|-----|------|-----|-----|-----|-----|-------|--------------|--------------|-----|-----|-----|-----|------|-----|---|---|---|---|--------|
| ABSTR  | ACT                     |       |     |      |     |     |     |     |       |              |              |     |     |     |     |      |     |   |   |   |   | 2      |
| NOMEN  | CLATURE                 |       |     |      |     |     |     |     |       |              |              |     |     |     |     |      |     |   |   |   |   | 4      |
| INTROI | DUCTION.                |       |     |      | •   | •   |     |     |       |              |              | •   |     |     |     |      |     |   |   |   | • | 5      |
| APPAR  | ATUS                    |       |     |      |     |     |     |     |       |              |              |     |     |     |     |      |     |   |   |   |   |        |
|        | nd Tunnel.              |       |     |      |     |     |     | •   | •     | •            | •            | •   |     | •   | •   | •    | •   |   | • | • | • | 5      |
|        | del                     |       |     |      |     |     |     |     | •     | •            | •            | •   | •   | •   | •   | •    | •   | ٠ | • | • | • | 5      |
|        | trumentatio             |       |     |      |     |     |     |     | •     |              | •            |     |     |     |     |      | -   | • | - |   |   | 5      |
|        | DURE                    |       |     |      |     | •   | •   | •   |       |              |              | •   | •   |     |     |      |     |   |   |   |   | 6<br>6 |
|        | TS ENCES                |       |     | •    | •   | •   | •   | •   | •     | •            | •            | •   | •   | •   | •   | •    | •   | • | • | • | • | 6      |
| UEL EU | ENCES                   | • •   | •   | •    | •   | •   | •   | •   | •     | •            | •            | •   | •   | •   | •   | •    | •   | • | • | • | • | O      |
|        |                         |       |     |      |     |     |     |     |       |              |              |     |     |     |     |      |     |   |   |   |   |        |
|        |                         |       |     |      |     |     | 1   | TAE | SLE   | :            |              |     |     |     |     |      |     |   |   |   |   |        |
|        |                         |       |     |      |     |     |     |     |       |              |              |     |     |     |     |      |     |   |   |   |   |        |
|        |                         |       |     |      |     |     |     |     |       |              |              |     |     |     |     |      |     |   |   |   |   |        |
| 1. Ru  | n Log                   | •     |     | •    | •   | •   | •   | •   | •     | •            | •            | •   | •   | •   | •   | •    | •   | • | • | • | • | 7      |
|        |                         |       |     |      |     |     |     |     |       |              |              |     |     |     |     |      |     |   |   |   |   |        |
|        |                         |       |     |      |     |     |     | ъΤ  | D A ' | TIC          | NIC          |     |     |     |     |      |     |   |   |   |   |        |
|        |                         |       |     |      |     | 11  | LU  | 3!  | KA    | 110          | כאי          |     |     |     |     |      |     |   |   |   |   |        |
| Figure |                         |       |     |      |     |     |     |     |       |              |              |     |     |     |     |      |     |   |   |   |   |        |
|        |                         | ,     |     |      |     | ^   |     |     |       |              |              |     |     |     | .,  |      | • • |   |   |   |   |        |
| 1.     | Tunnel Hot<br>Wind Tunn |       |     |      |     |     |     |     | a 18  |              |              | •   | -   |     |     |      | •   |   |   |   |   | ġ      |
| 2.     | WED 16 C                | ۸     | - ( | ۱h م |     | h - |     |     |       | ٦ <b>.</b> . | •••          | . + | ۸ م | ~ ~ | 1   | h1-  | _   |   |   |   |   | 9      |
| ۷.     | VKF-16-C                | Ar    | CC  | ,na  | ım  | be  | Г   | inc | 1 1   | nı           | .05          | ıı, | AS  | se  | m   | ory  | •   | • | • | • | • | 9      |
| 3.     | Model 1C                | •     |     | •    | •   | •   | •   | •   | •     | •            | •            | •   | •   | •   | •   | •    | •   | • | • | • | • | 10     |
| 4.     | Typical Sc              | hlie  | re  | n i  | n l | Но  | tsł | hot | 1     | ; N          | <b>/</b> 1 : | = 1 | 7.  | 5,  |     |      |     |   |   |   |   |        |
|        | Re = 413 x              | 10    | 3.  | •    | •   |     |     |     |       | •            |              | •   | •   | •   | •   | •    | •   |   | • |   |   | 11     |
| 5.     | Typical Os              | scil! | log | raj  | ph  | T   | rac | ce  |       | •            |              |     |     |     |     |      |     |   | • | • | • | 12     |
| 6.     | Drag Coef               | fici  | ent | T    | re  | nd  | wi  | ith | v     | ise          | າດາ          | ıs  | In  | tei | rac | et i | on  |   |   |   |   |        |
| ٠.     | Parameter               |       |     |      |     |     |     |     |       |              |              |     |     |     |     |      |     |   | • | • |   | 13     |

### NOMENCLATURE

| $c_{D_0}$ | Drag coefficient aι zero angle of attack, drag/qS         |
|-----------|-----------------------------------------------------------|
| С         | Chord length, maximum diameter, in.                       |
| M         | Mach number                                               |
| q         | Dynamic pressure, $\rho V^2/2$ , psia                     |
| Re        | Reynolds number, based on model diameter                  |
| S         | Model reference area, based on model diameter, in. $^{2}$ |
| t         | Maximum model thickness, in.                              |
| V         | Velocity, ft/sec                                          |
| α         | Angle of attack, deg                                      |
| ρ         | Free-stream density, atm                                  |

### INTRODUCTION

A lenticular shape was tested for the Air Proving Ground Center (APGC), Eglin Air Force Base, Florida in Tunnel Hotshot 1 of the von Karman Gas Dynamics Facility, Arnold Engineering Development Center (VKF-AEDC) from July 22 to August 4, 1960. The objective of the test was to obtain aerodynamic drag data at Mach numbers from 17 to 20 at zero angle of attack.

### **APPARATUS**

### WIND TUNNEL

Tunnel Hotshot 1 (Fig. 1) is a hypervelocity, blowdown wind tunnel with a 16-in.-diam test section. In these tests nitrogen, initially confined to the arc chamber, was heated and pressurized to approximately 3000°K and 1000 atm by generating an electric arc in the chamber. The heated gas then expanded through a conical nozzle into the test section where Mach numbers of approximately 20 were obtained. Additional description of this tunnel is included in Ref. 1. New copper arc chamber liners and new Semicon tungsten throats were used for each run. The arc chamber configuration is shown in Fig. 2.

### MODEL

The APGC supplied two models of one configuration (Fig. 3). The models were constructed with a thin outer skin of resin-impregnated fiberglass and were filled with foamed plastic.

### INSTRUMENTATION

The aerodynamic drag was measured with a single-component strain-gage balance. The drag force was sensed on the balance centerline which coincided with the model centerline.

Arc chamber pressure was measured with a strain-gage-type pressure transducer. Test section pitot pressure and model base pressure were measured with variable-reluctance transducers.

Manuscript released by author October 1960.

A double pass schlieren system was used to obtain the shock pattern about the model on several runs. A typical schlieren photograph is shown in Fig. 4.

### **PROCEDURE**

The test was conducted at Mach numbers from 17 to 20 at nominal initial stagnation pressures of 16,000 psia and temperatures of 3000°K. Nitrogen was used as the test gas. For this test the Reynolds number, based on model diameter, varied from 154,000 to 413,000. A run log is presented in Table 1.

Four runs were made with 0.089-in.-diam throats and three with 0.125-in.-diam throats to provide variation in the free-stream conditions. A typical oscillograph trace is shown in Fig. 5.

### RESULTS

The measured drag coefficient at zero angle of attack versus  $M^3/\sqrt{Re}$  for the lenticular shape is shown in Fig. 6. The trend in variation of viscous drag with this parameter is consistent with flat plate theory and data reported in Ref. 2. The experimental drag value at Mach 8 (Ref. 3) is shown in Fig. 6 for comparison with the Hotshot 1 data.

### REFERENCES

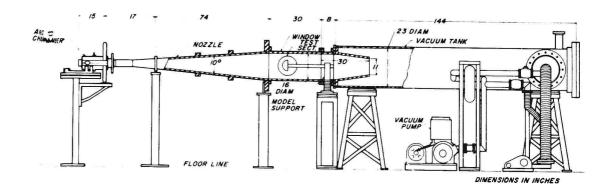
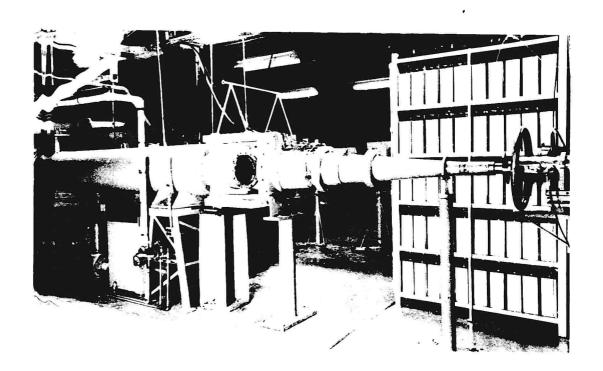

- 1. Test Facilities Handbook, (2nd Edition). "Gas Dynamics Facility,
  Vol. 4." Arnold Engineering Development Center, January 1959.
- 2. Bertram, Mitchell H. "Boundary Layer Displacement Effects in Air at Mach Numbers of 6.8 and 9.6." NASA-TR-R-22, 1959.
- 3. Kayser, L. and Hillsamer, M. "Longitudinal Stability and Control Characteristics of a Lenticular Model at Mach No. 8."
  AEDC-TN-60-163, August 1960. (Secret)

TABLE 1


RUN LOG OF FREE STREAM CONDITIONS

| Run<br>No. | Mach<br>Number | Reynolds<br>Number* x 10 <sup>-3</sup> | Density,<br>atm       | Velocity,<br>ft/sec | C <sub>Do</sub> |
|------------|----------------|----------------------------------------|-----------------------|---------------------|-----------------|
| 1576       | 17.51          | 413                                    | $2.39 \times 10^{-3}$ | $7.43 \times 10^3$  | 0.0292          |
| 1577       | 19.50          | 154                                    | 0.86                  | 8.73                | 0.0377          |
| 1578       | 17.87          | 391                                    | 2.15                  | 7.41                | 0.0305          |
| 1580       | 19.07          | 161                                    | 0.95                  | 8.73                | 0.0356          |
| 1582       | 19.44          | 161                                    | 0.89                  | 8.59                | 0.0362          |
| 1583       | 17.20          | 254                                    | 1.78                  | 8.28                | 0.0246          |
| 1584       | 17.17          | 261                                    | 1.82                  | 8.30                | 0.0254          |
|            |                |                                        |                       | <u> </u>            |                 |

<sup>\*</sup>Reynolds number is based upon a model diameter of 6 in.



Assembly



Arc Chamber, Nozzle, and Test Section

Fig. 1 Tunnel Hotshot 1, a 16-in.-diam Hypervelocity Wind Tunnel

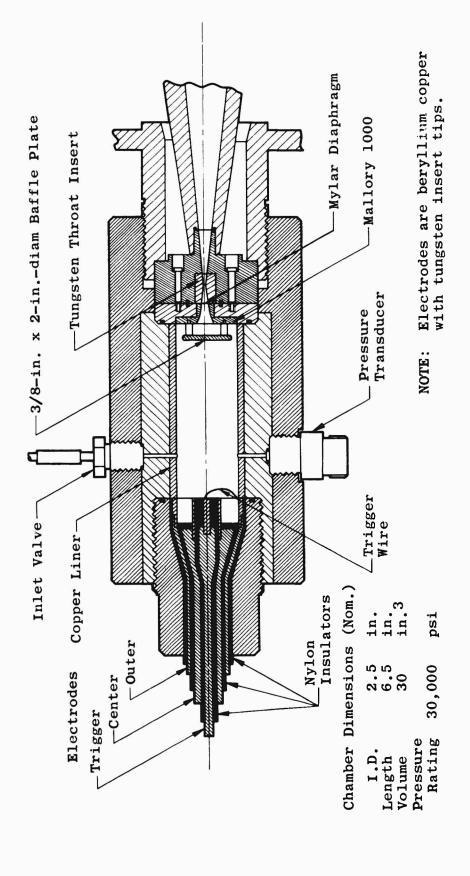



Fig. 2 VKF-16-C Arc Chamber and Throat Assembly

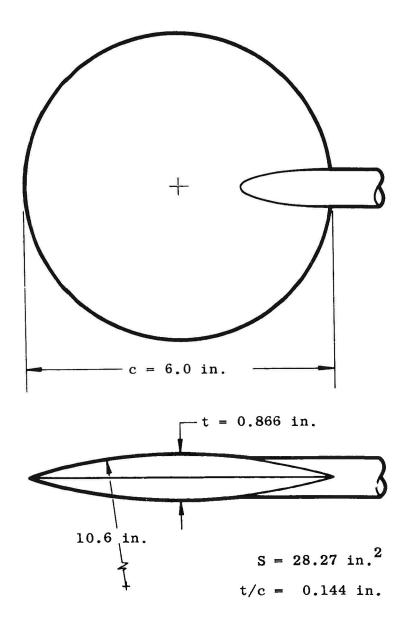



Fig. 3 Model 1C



Fig. 4 Typical Schlieren in Hotshot 1; M = 17.5, Re =  $413 \times 10^3$ 

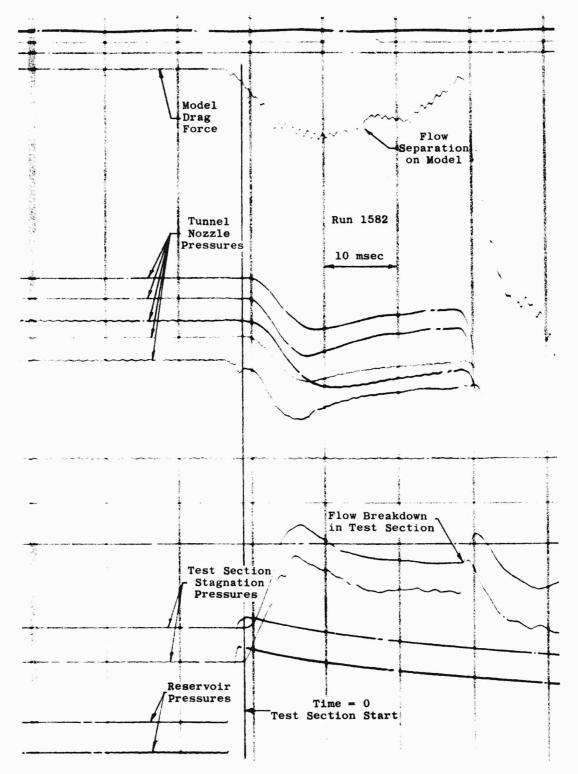



Fig. 5 Typical Oscillograph Trace

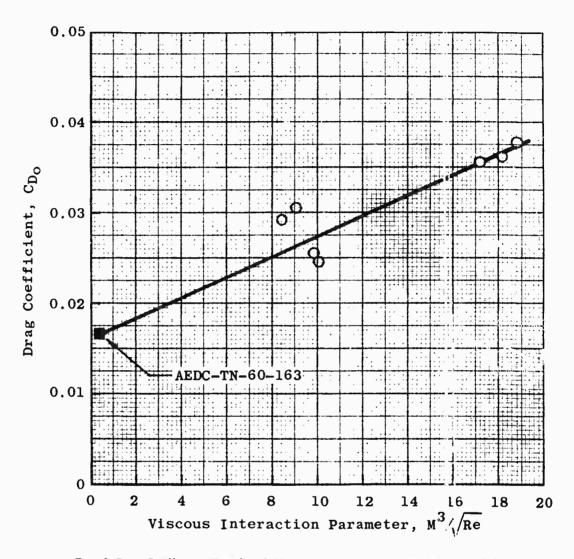



Fig. 6 Drag Coefficient Trend with Viscous Interaction Parameter :  $\alpha=0$  deg